McMurdo LTER Publications

Export 893 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Neumann K. Carbon dynamics in lakes and streams of Taylor Valley, Antarctica. 1999;Ph.D. doi:LTER.
Moorhead DL, W. Davis S, Wharton, Jr. RA. Carbon dynamics of aquatic microbial mats in the Antarctic dry valleys: A modelling synthesis. In: Ecosystem Processes in Antarctic Ice-free Landscapes. Ecosystem Processes in Antarctic Ice-free Landscapes. Balkema Press, Rotterdam; 1997:181-196.
Neumann K, W. Lyons B, Priscu JC, DesMarais DJ, Welch KA. The Carbon Isotopic Composition of Dissolved Inorganic Carbon in Perennially Ice-Covered Antarctica Lakes: Searching for a Biogenic Signature. Annals of Glaciology. 2004;39.
Marion GM, Murray AE, Wagner B, Fritsen CH, Kenig F, Doran PT. Carbon Sequestration and Release from Antarctic Lakes: Lake Vida and West Lake Bonney (McMurdo Dry Valleys). Aquatic Geochemistry. 2013;19(2):135 - 145. doi:10.1007/s10498-012-9184-1.
W. Lyons B, Leslie DL, Harmon RS, et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Applied Geochemistry. 2013;32:26 - 36. doi:10.1016/j.apgeochem.2012.08.019.
Priscu JC, Wolf CF, Takacs-Vesbach CD, et al. Carbon transformations in a perennially ice-covered Antarctic lake. 1999.
Kohler TJ, Stanish LF, Liptzin D, Barrett JE, McKnight DM. Catch and release: Hyporheic retention and mineralization of N-fixing Nostoc sustains downstream microbial mat biomass in two polar desert streams. Limnology and Oceanography Letters. 2018;3(4):357 - 364. doi:10.1002/lol2.10087.
Gutterman WS. Causes and characteristics of electrical resistivity variability in shallow (<4 m) soils in Taylor Valley, East Antarctica. Department of Geology and Geophysics. 2021;M.S. Available at: https://digitalcommons.lsu.edu/gradschool_theses/5411.
Gutterman WS, Doran PT, Virginia RA, et al. Causes and characteristics of electrical resistivity variability in shallow (<4 m) soils in Taylor Valley, East Antarctica. Journal of Geophysical Research: Earth Surface. 2023;128(2):e2022JF006696. doi:10.1029/2022JF006696.
Fountain AG, W. Lyons B. Century to millennial scale climate change and ecosystem response in Taylor Valley, Antarctica. In: Greenland D, Goodin DG, Smith RC Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. New York City: Oxford University Press; 2003:319-340.
Chown SL, Lee JE, Hughes KA, et al. Challenges to the Future Conservation of the Antarctic. Science. 2012;337(6091):158 - 159. doi:10.1126/science.1222821.
Gries C, Beaulieu S, Brown RF, et al. Change in Pictures: Creating best practices in archiving ecological imagery for reuse. Biodiversity Information Science and Standards. 2020;4. doi:10.3897/biss.4.59082.
Fulton J, McKnight DM, Foreman CM, Cory RM, Stedmon C, Blunt E. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. Aquatic Sciences. 2004;66:1-20.
Cawley KM, McKnight DM, Miller PL, et al. Characterization of fulvic acid fractions of dissolved organic matter during ice-out in a hyper-eutrophic, coastal pond in Antarctica. Environmental Research Letters. 2013;8(4):045015. doi:10.1088/1748-9326/8/4/045015.
Schwartz E, Van Horn DJ, Buelow HN, et al. Characterization of Growing Bacterial Populations in McMurdo Dry Valley Soils through Stable Isotope Probing with 18O-water. FEMS Microbiology Ecology. 2014;89(2):415-425. doi:10.1111/1574-6941.12349.
D’Andrilli J, Foreman CM, Marshall AG, McKnight DM. Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Organic Geochemistry. 2013;65:19 - 28. doi:10.1016/j.orggeochem.2013.09.013.
Schulte NO, McKnight DM. Characterization of spatial and environmental influences on stream diatoms and cyanobacteria. Environmental Studies. 2020;Ph.D. Available at: https://www.proquest.com/docview/2476216263.
Singley JG, Wlostowski A, Bergstrom AJ, et al. Characterizing hyporheic exchange processes using high-frequency electrical conductivity-discharge relationships on subhourly to interannual timescales. Water Resources Research. 2017;53(5):4124 - 4141. doi:10.1002/wrcr.v53.510.1002/2016WR019739.
Matula EE. Characterizing photobioregenerative technology for simulataneous thermal control and air revitalization of spacecraft and surface habitats. Department of Aerospace Engineering Sciences. 2019;Ph.D. Available at: https://scholar.colorado.edu/asen_gradetds/258/.
Barletta RE, Priscu JC, Mader HM, Jones WL, Roe CH. Chemical analysis of ice vein microenvironments: II. Analysis of glacial samples from Greenland and Antarctica. Journal of Glaciology. 2012;58(212):1109 - 1118. doi:10.3189/2012JoG12J112.
Tranter M, Fountain AG, W. Lyons B, Nylen TH, Welch KA. The chemical composition of runoff from Canada Glacier, Antarctica: implications for glacier hydrology during a cool summer. Annals of Glaciology. 2005;40:15-19. doi:LTER.
Tegt S. The chemical evolution of Canada Glacier melt: supraglacial and proglacial waters in Taylor Valley, Antarctica. 2002;M.S. doi:LTER.
Scheuermann J, W. Lyons B. Chemical Weathering and Mineralogy of McMurdo Dry Valley Streams: Examining the Controls of Current and Future Ephemeral Stream Geochemistry. School of Earth Sciences. 2015;Undergraduate Theses:38. Available at: http://hdl.handle.net/1811/68887.
Nezat CA, W. Lyons B, Welch KA. Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). GSA Bulletin. 2001;113:1401-1408.
Nezat CA. Chemical Weathering in Taylor Valley, Antarctica: Quantity and Quality. 1998;Ph.D. doi:LTER.

Pages