McMurdo LTER Publications

Export 901 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lee P, Priscu JC, DiTullio GR, Riseman S, Tursich N, DeMora S. Elevated levels of dimethylated-sulfur compounds in Lake Bonney, a poorly ventilated Antarctic lake. Limnology and Oceanography. 2004;49:1044-1055.
Lee CK, Laughlin DC, Bottos EM, et al. Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Communications Biology. 2019;2(1). doi:10.1038/s42003-018-0274-5.
Lee JR, Waterman MJ, Shaw JD, et al. Islands in the ice: Potential impacts of habitat transformation on Antarctic biodiversity. Global Change Biology. 2022. doi:10.1111/gcb.16331.
Lee P, Mikucki JA, Foreman CM, et al. Thermodynamic constraints on microbially mediated processes in lakes of the McMurdo Dry Valleys, Antarctica. Geomicrobiology Journal. 2004;21:1-17. doi:LTER.
Laybourn-Parry J. Polar Limnology - the past, the present, and the future. Review in the SCAR VIII International Biology Symposium Proceedings. In: Antarctic Biology in a global context. Antarctic Biology in a global context.; 2003.
Laybourn-Parry J. Survival mechanisms in Antarctic lakes. Philosophical Transactions of the Royal Society B. 2002;357:863-869.
Laybourn-Parry J, Roberts EC, Bell ER. Mixotrophy as a survival strategy among planktonic protozoa in Antarctic lakes. In: Howard-Williams C, Davidson W, Broady P Antarctic Ecosystems: Models for Wider Ecological Understanding. Antarctic Ecosystems: Models for Wider Ecological Understanding. Caxton Press; 2000.
Laybourn-Parry J, James MR, McKnight DM, Priscu JC, Spaulding SA, Shiel R. The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994. Polar Biology. 1997;17:54-61.
Laybourn-Parry J, Bell ER, Roberts EC. Protozoan growth rates in Antarctic lakes. Polar Biology. 2000;23:445-451.
Laybourn-Parry J. The microbial loop in Antarctic lakes. In: Ecosystem Processes in Antarctic Ice-free Landscapes. Ecosystem Processes in Antarctic Ice-free Landscapes. Rotterdam: Balkema Press; 1997:231-240.
Lawson J. Lacustrine Biogeochemistry of the McMurdo Dry Valleys. 2005;Ph.D. doi:LTER.
Lawson J, Doran PT, Kenig F, DesMarais DJ, Priscu JC. Stable carbon and nitrogen isotopic compositions of benthic and pelagic organic matter in four polar lakes of the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry. 2004;10:269-301.
Lawrence J, Doran PT. Evidence of subglacial brine inflow and wind-induced mixing from high resolution temperature measurements in Lake Bonney, Antarctica. Department of Geology and Geophysics. 2017;M.S. Available at: https://digitalcommons.lsu.edu/gradschool_theses/4343.
Lawrence J, Doran PT, Winslow LA, Priscu JC. Subglacial brine flow and wind-induced internal waves in Lake Bonney, Antarctica. Antarctic Science. 2020. doi:10.1017/S0954102020000036.
Langford ZL, Gooseff MN, Lampkin DJ. Spatiotemporal Dynamics of Wetted Soils across a Polar Desert Landscape, McMurdo Dry Valleys Antarctica. Antarctic Science. 2015;27(2):197-209. doi:10.1017/S0954102014000601.
Langford ZL, Gooseff MN. Are the Dry Valleys getting wetter? A preliminary assessment of wetness across the McMurdo Dry Valleys landscape. Department of Civil & Environmental Engineering. 2013;M.S. Available at: https://etda.libraries.psu.edu/catalog/17364.
Lancaster N. Flux of eolian sediment in the Mcmurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research. 2002;34:318-323.
K
Kwon M, Kim M, Takacs-Vesbach CD, et al. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environmental Microbiology. 2017;19(6):2258 - 2271. doi:10.1111/emi.2017.19.issue-610.1111/1462-2920.13721.
Kuentz LC, Levy JS, Salvatore MR. Timing and duration of ephemeral Antarctic water tracks and wetlands using high temporal–resolution satellite imagery, high spatial–resolution satellite imagery, and ground-based sensors in the McMurdo Dry Valleys. Arctic, Antarctic, and Alpine Research. 2022;54(1):538 - 561. doi:10.1080/15230430.2022.2123858.
Kudalkar PS, Priscu JC. Physiological characteristics of fungi associated with Antarctic environments. Land Resources and Environmental Sciences. 2016;M.S. Available at: https://scholarworks.montana.edu/xmlui/handle/1/9835.
Konley S. Linkages between soils and lake ice sediments biogeochemistry: Taylor Valley, southern Victoria Land, Antarctica. 2002;M.S. doi:LTER.
Kong W, Ream DC, Priscu JC, Morgan-Kiss RM. Diversity and Expression of RubisCO Genes in a Perennially Ice-Covered Antarctic Lake during the Polar Night Transition. Applied and Environmental Microbiology. 2012;78(12):4358-4366. Available at: http://aem.asm.org/content/78/12/4358.short.
Kong W, Dolhi JM, Chiuchiolo A, Priscu JC, Morgan-Kiss RM. Evidence of form II RubisCO ( cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiology Ecology. 2012;82(2):491 - 500. doi:10.1111/j.1574-6941.2012.01431.x.
Konfirst MA, Sjunneskog C, Scherer RP, Doran PT. A diatom record of environmental change in Fryxell Basin, Taylor Valley, Antarctica, late Pleistocene to present. Journal of Paleolimnology. 2011;46(2):257 - 272. doi:10.1007/s10933-011-9537-6.
Kohler TJ, Howkins A, Sokol ER, et al. From the Heroic Age to today: What diatoms from Shackleton's Nimrod expedition can tell us about the ecological trajectory of Antarctic ponds. Limnology and Oceanography Letters. 2021. doi:10.1002/lol2.10200.

Pages